Science Home Learning

Science is a fantastic subject full of curiosity and opportunities to explore and there are many different ways to celebrate science at home with your children. Some of these can be virtual, through books or from in gardens or surrounding outdoor areas. Please see the guidance below for some ideas you may wish you try. We would love to see any science activities you complete so please email any photos or comments to the school.

Experiments at home

We have attached some home experiments for you to try (please see the end of the document). When completing these try to encourage children to describe what they are seeing and ask more questions about what is happening. The National Curriculum also requires children to be able to work scientifically so remind children about following the method fairly. As well as the ideas attached, there are plenty of other ways to find experiments at home by visiting the following websites:

- www.stem.org.uk/resources
- www.pstt.org.uk/resources
- www.sciencekids.co.nz/experiments.html

Virtual Experiments

If you are unable to access some of the resources needed for these experiments, there are lots of ways to watch similar experiments online! YouTube as some great videos that children can watch and can still comment on what they have seen. For older children, ask them to watch an experiment and then write a conclusion on what they have seen in their home learning journals.

Learning Outdoors

Despite the current climate, if you do have access to an outdoor area there is lots of exploration you can do outside. We are very lucky that we are moving in to Spring, as children can observe the changes of plants and creatures around

them. Children could research different plants and trees, find out about different parts of a plant or, if you have access to the resources, plant seeds or bulbs and monitor how they grow. Encourage children to keep a log of any changes, for younger children this could be through drawing what they see. Minibeast hunts are another exciting part of science children could complete and a challenge for older children could be to research and create a fact file about the creatures they find.

Reading and Online Videos

Reading is a great way for children to enjoy science and find out about the world around them. The school has a subscription to Big Cat Collins and Espresso (see website for log in information) and there are lots of non-fiction stories and videos to enjoy.

Espresso: To access the resources:

1. Go to our website: www.discoveryeducation.co.uk

2. Click on "login" and select "Espresso"

3. Enter your username: student15927

4. Enter your password: Bovingdon

BBC Bitesize

www.bbc.co.uk/bitsize/subjects

BBC Bitesize has fantastic games and videos for children to explore all aspects of Science.

Enjoy learning Science!

You Will Need

Dissolving

Which solids dissolve in water?

- Water (hot and cold)
- Transparent Containers
- Substances to try and dissolve; sand, sugar, salt, coffee etc

Method

- Add a teaspoon of whichever solid you are testing to a glass of cold water and a glass of hot water, stir and observe the difference.
- Look to see if the solid dissolves in the hot water and cold water and if 2 one is better than the other.
- Can you design a chart to record your observation?

The Science Bit

Things like salt, sugar and coffee dissolve in water. They are soluble. They usually dissolve faster and better in hot water. Pepper and sand are insoluble, they will not dissolve even in hot water.

For Older Children

Everything is made of particles which are always moving. When a soluble solid (solute) is mixed with the right liquid (solvent), it forms a solution. This process is called dissolving.

Two things that affect the speed at which the solid dissolves are temperature and the size of the grains of the solid. Caster sugar which is made of fine particles will dissolve quickly, but bigger sugar particles will take longer.

Solids dissolve faster in hot water as in hot water the water molecules are moving faster, so bump into the solid more often which increases the rate of reaction.

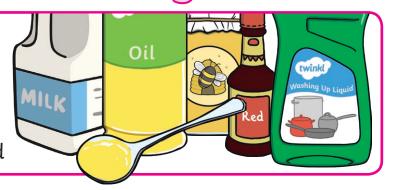
Fireworks in a Glass

• Warm Water
• Oil
• A Tall Glass
• Food Colouring

This is a very cool, simple and fun experiment, and also completely safe, just don't drink the water!

Method

- 1 Fill the tall glass with warm water.
- Pour a small amount of oil into another container and add a few drops of food colouring.
- **3** Give it a good stir, if it doesn't mix, add a bit of water.
- 4 Pour the food colouring and oil mixture into the warm water and watch the fireworks!


he Science Bit

Oil and water don't mix. Also oil is less dense than water (meaning there is less of it in the same volume) and therefore floats on top of water in a nice layer. The food colouring we used was water based and therefore does not mix with the oil, instead it sinks through the oil into the water below. Since the addition of the colouring makes the food colouring heavier than the water, it sinks to the bottom leaving trails (resembling fireworks) as some of the colour diffuses into the water.

Fun with Density

You Will Need

- Honey
- Vegetable oil
- Milk
- Food colourings
- Water
- Golden syrup
- A Glass
- Washing up liquid

Density is a really tough concept to grasp. We confuse ourselves by referring to our weight all the time when we really mean our **mass**. **Mass** is effectively 'how much stuff' is there. **Density** is how much mass is in a volume (or space).

One way to illustrate density is to pour different liquids (which have different densities) on top of each other. The liquids with the greatest density sink to the bottom.

- 1 Measure out the same volume of each of the liquids. Colour the water and the milk if you wish.
- 2 Starting from the bottom, pour in the honey. Make sure it goes into the middle of the glass and that you don't get any honey on the sides.
- 3 Slowly pour the golden syrup on top, followed by the washing up liquid.
- 4 Then add the milk, followed by the water.
- 5 Finally top with vegetable oil and admire your rainbow glass!

The Science Bit

Each of the liquids have a different mass of molecules or different numbers of parts squashed into the same volume of liquid, this makes them have different densities and therefore one can sit on top of the other – the more dense a liquid is the heavier it is.

Do you think you could float small objects on each of the different levels? We'd love to see a photo if you can.

The Science Bit 9 9 1 4

Lava Lamp

Water

- Food Colouring
- Vegetable Oil
- Effervescent
 Tablets
- A Clear Plastic
 Bottle or Jar

Method

You Will Need

- 1 Fill the bottle or jar a quarter full with water.
- Top up, almost to the top with the vegetable oil
- 3 They should separate into two layers, water at the bottom and oil sitting on top.
- 4 Add about 6-8 drops of food colouring once the oil and water separate.
- 5 The colour will mix with the water at the bottom.
- 6 Pop in half an effervescent tablets and watch the bubbles form. Add more effervescent tablets bit by bit to keep the bubbles rising and falling.

Firstly water and oil will not mix — this is because we say that water is a polar molecule — its structure means that is has a positive charge one end and a negative charge the other. Water molecules stick together because the positive end of one water molecule is attracted to the negative end of another. Oil molecule structure is different — it is non polar, meaning that its charge is more evenly spread out, so the oil is not attracted to water — in fact we call it hydrophobic (water fearing) so it tries to get as far away from water as possible and will not mix. The reason that oil rests on top of the water rather than underneath is because it has a different density to water.

As the effervescent tablets is added (this is made of citric acid and sodium bicarbonate) it reacts with the water and form carbon dioxide gas and sodium citrate. It is the carbon dioxide bubbles that carry the coloured water to the top.

